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Vector States for Single and Multiple-Pole 
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The formulation of quantum mechanics in rigged Hilbert spaces is used to study 
the vector states for resonance states or Gamow vectors. An important part of  
the work is devoted to the construction of Gamow vectors for resonances that 
appear as multiple poles on the analytic continuation of  the S-matrix, S(E). The 
kinematical behavior of  these vectors is also studied. This construction allow for 
generalized spectral decompositions of the Hamiltonian and the evolutionary 
semigroups, valid on certain locally convex spaces. Also a first attempt is made 
to define the resonance states as densities in an extension of the Liouville space, 
here called rigged Liouville space. 

1. I NTRODUCTION 

This is a paper on resonances and the representation of resonance states 
on certain extensions of Hilbert spaces called rigged Hilbert spaces (RHS). 
A RHS is a triplet of spaces: 

C ~ C x ~  (1.1) 

where ~ is a Hilbert space. The space �9 is a dense subspace of ~ endowed 
with its own topology (stronger than the topology it has as a subspace of ~ )  
and x ~  the antidual of ~ ,  i.e., the space of continuous antilinear mappings 
from ~ into C, the set of complex numbers. This antidual also has a natural 
topology so that the spaces �9 and x ~  are a dual pair in the sense that ~ is 
the antidual of x~.  This happens in particular if �9 possesses the property 
of nuclearity. For details on RHS and their mathematical properties see 
Gel'land and Vilenkin (1964), Maurin (1968), Roberts (1966), Antoine 
(1969), and Melsheimer (19"74). 
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RHS have appeared in the mathematical literature in connection with 
the theory of representations of noncompact groups (Gel'fand and Vilenkin, 
1964; Maurin, 1968). It was realized soon that RHS are suitable for making 
rigorous the Dirac formalism of quantum mechanics (Dirac, 1965) (Hilbert 
spaces do not allow for plane waves, localized states, and other nonnormaliz- 
able states or complete sets of  eigenvaIues for most observables) (Bohm, 
1965; Roberts, t966; Antoine, 1969; Melsheimer, t974). In particular, the 
requirement that an observable must have a complete set of  proper eigenvec- 
tors can only be implemented on a rigorous basis in a suitable RHS. 

Another limitation of quantum mechanics on Hilbert space is that it 
does not allow for Gamow states (Gamow, 1928) or states describing reso- 
nance states, since they are also not normalizable. The formulation of quantum 
mechanics on RHS permits the use of these nonnormalizable entities as 
elements of the antidual space x@. 

Another very interesting property is the possibility of extending by 
continuity certain (bounded or not) operators on 9s to the antiduals of some 
spaces @ such that �9 C ~ C x ~  is a RHS. In fact, if A is an operator on 

such that (1) for any q~ e ~ ,  A~ e @, and (2) A is continuous on �9 (with 
respect to the topology on @), then A can be extended to a continuous 
operator on x ~  by using the following definition: 

(A~plF) = (q~laF) (1.2) 

where (q~lF) denotes the action of the functional F e x@ on the vector ~p E 
(in this paper we shall use the same symbol for an operator and for its 

extension to a bigger space). In particular, ifA is self-adjoint, we always can 
find a �9 with the above properties. For details, see Gel'fand and Vilenkin 
(1964), Maurin (1968), Roberts (1966), Antoine (1969), and Melsheimer 
(1974). 

In the formalism of the S-matrix, resonances appear as poles of the 
analytically continued S-matrix in the energy representation to the second 
sheet of a two-sheeted Riemann surface corresponding to the transformation 
p = ,rE (Bohm, 1994). Bohm (1980, 1981) first constructed rigorously the 
Gamow vectors corresponding to simple pole resonances of this continuation 
of the S-matrix. In addition, the unitary group giving the time evolution splits 
into two semigroups in the presence of resonances. Using this fact, Prigogine 
and co-workers (Prigogine, 1992; Petrovski and Prigogine, 1991; Antoniou 
and Prigogine, 1993) realized that resonances exhibit a typical irreversible 
behavior at the microphysical level. 

The possibility of the existence of resonances as poles of the continuation 
of the S-matrix of order higher than one has also been considered (Bohm, 
1994; Newton, 1982). In connection with this, Jordan block structures have 
been used for the Hamiltonian. These Jordan block structures can be easily 



Vector States for Single and Multiple-Pole Resonances 2273 

derived and understood in the context of the formulation of quantum mechan- 
ics on RHS. For this formulation, we refer the reader to (Bohm, 1965, 1994; 
Bohm and Gadella, 1989). 

The idea of exploring Gamow densities or density operators has not yet 
been much used. Here we make a preliminary attempt in this direction. 

This paper is organized as follows: In the next section, we briefly 
review the fundamentals on the construction of Gamow vectors for single 
and multiple-pole resonances. Then we proceed to the generalization to multi- 
ple-pole resonances. In Section 3, we study generalized spectral decomposi- 
tions for the total Hamiltonian and also for the semigroups given the time 
evolution. In the last part of the paper, we present the idea of Gamow states 
for resonances and make an attempt to define their time evolution. General 
ideas are presented in Section 4 and the time evolution for Gamow states 
for multiple pole resonances is treated in Section 5. 

2. M U L T I P L E - P O L E  RESONANCES 

In the present and next sections, we study a simple model of resonant 
scattering, which has been studied elsewhere (Bohm, 1980, 1981, 1994; Bohm 
and Gadella, 1989; Bohm et al., 1997), in which we assume further properties 
on the poles of the S-matrix. We do not discuss here the details of resonant 
scattering processes, which are presented, for instance, in Bohm (1994). Here, 
we assume that resonances are characterized by poles of the S-matrix, in the 
energy representation, on the second sheet of the two-sheeted Riemann surface 
associated with the transformation p = ,J-E. As in the above references, we 
assume these poles come in conjugate pairs having positive real part and 
nonzero imaginary part (usually associated with resonant energy and mean 
life, respectively). For the sake of simplicity, we further assume that we have 
one such pair only. In our previous work on the subject, we supposed that 
these resonance poles are simple. In this paper, we drop this assumption, 
although we admit that any pair of conjugate poles are of the same order. 
This is consistent with the properties of the S-matrix (Newton, 1982; Nussens- 
zveig, 1972). 

To understand our notation [which has been explained in Bohm and 
Gadella (1989)], we assume that the continuous parts of the "free" Hamil- 
tonian K and the "perturbed" Hamiltonian H = K + Vare unitarily equivalent. 
This equivalence is usually given by the M~ller wave operators ~ .  We 
may further assume that their common continuous spectrum is absolutely 
continuous and given by R § = [0, ~). Although this is not essential, it 
simplifies the discussion. Thus, H and K are unitarily equivalent to the 
multiplication operator/~ on LZ(R § [/)t0(E) = Eto(E)]. 
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Henceforth, we call ~ac(K) and ~ac(H) the absolutely continuous spaces 
of K and H, respectively (Read and Simon, 1972; Amrein et al., 1977). Let 
U be a unitary operator that "diagonalizes" the restriction of K to ~ac(K) 
(UKU -L = E'). One has that U(I~+-)-IH(I~+-)U-I = E, i.e., (~-*)U -t "diago- 
nalize" the restriction of H to ~a~(H). Thus, we have the following diagram: 

(~--)-I U 
~ac(n) ) ~ac(g) ) L2(+) (2.1) 

Consider now the set of spaces ~z+ n S, where ~_~ are the spaces of 

~'upper'~ 
Hardy class functions on the ( lowerJ  half-plane, respectively (Duren, 1970; 

Koosis, 1980), and S is the Schwartz space of all functions admitting deriva- 
tives at all orders such that they and their derivatives go to zero faster than 
the inverse of any polynomial at infinity (Reed and Simon, 1972). The 
restriction of any function on ~ n S to R + uniquely determines its values 
on the whole real line (van Winter, 1974). These restrictions form dense 
subspaces of L2(R +) (Gadella, 1983) and determine two one-to-one onto 
mappings: 

0_+: ~ A S , - .  ~ NSIR+ = A_+ (2.2) 

~ n S are Fr~chet nuclear spaces (Gel'fand and Vilenkin, 1964; Bohm and 
Gadella, 1989; Schaeffer, 1970). This structure is transmitted to Az via 0_~. 
Also, the identity mapping I: A_+ ~ L2(R +) is continuous (Bohm and Gadella, 
1989). Therefore, if • represent the antidual spaces of A_+ (spaces of all 
continuous antilinear functionals on Az), the triplets 

A_+ C L2(R +) C • (2.3) 

are RHS (Bohm and Gadella, 1989). Now, define ~ -  = f~zU-IAT_ [the 
change of sign is due to the usual notation in scattering theory; see Bohrn 
and Gadella (1989)]. Then, the triplets 

" C ~ ( H )  C • (2.4) 

are new RHS. The relation between ~-+ and ~ 2  n S is given by 

(f~-+)-JU 8Zt 
> A.v_ > ~ 2  n S (2.5) 

i.e., by the operator 

W ~ := (O-+)-lU0~_1 (2.6) 

Then, if t~ + is an arbitrary vector in ~+ and q~- is an arbitrary vector in 
~ - ,  we have, respectively, 

Wt~ + = t~(E) ~ S n ~2; W-tp- = q~(E) ~ S n ~ _  (2.7) 
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We recall that the complex conjugate of a function in ~ is in ~ ,  so 
that ~#(E) := [~(E)]* ~ S N ~z+ and q~#(E) := [q~(E)]* ~ S f') ~z_. Now, 
for any complex number z with imaginary part Im z -> 0, the functional 
given by 

~+ ~ (q,+lz +) :=  ~ ( z )  (2.8) 

is a continuous antilinear functional on ~+, where ~#(z) is the value of the 
function +#(E) at the point z. This functional is an eigenvector of H with 
eigenvalue z [we use the same letter to denote the operator H and its extensions 
to the spaces x(~z)] ,  i.e., HIz +) = zlz+). Also, for any z with Im z <- 0, the 
functional given by 

q~- ~ ( tp- lz - ) :=  ~(z)  (2.9) 

is a continuous antilinear functional on ~ - ,  where tp#(z) is the value of tp#(E) 
at the point z. Also, HIz-} = zlz-). 

If simple poles of the S-matrix are located at zR = ER -- iF~2 and z* --- 
Ee + iF~2 (second sheet), the vectors Izk-) -= If0) and Iz *+} ~ l f0) are called 
the decaying and growing Gamow vectors, respectively (Bohm and Gadella, 
1989). They play the role of vector states for the decaying and growing parts of 
a resonance in a resonant scattering (Bohm, 1994; Bohm and Gadella, 1989). 

Now, assume that a state created in the remote past as ~"  produces a 
resonance and is transformed into S~ in = ~o~t long after the interaction that 
produces the resonance is switched off. Since observations on ~o~t can be 
made on the region occupied by the registration apparatus only, what we 
measure is indeed the state q~out, which is given by the projection o f ~  ~ into the 
region occupied by the registration apparatus. We further make an important 
Ansatz. Given ~in, the vector t~ § := ~§ must be in ~§ and the vector ~oot 
must have the property that q~- = 12-~ ~ in ~ - .  The consequence of this 
choice is that the sets of preparable and observable pure states belong to 
respective dense subspaces in ~ .  This is not a limitation, since, given an 
arbitrary vector in ~ c ,  we always can single out an arbitrarily close vector 
in a dense subspace. Thus, the error produced by this replacement can always 
be chosen smaller than the accuracy of the measurement apparatus. Now, 
following the standard literature (Bohm, 1981, 1994; Newton, 1982), we are 
interested in the transition amplitude between tp ~ and all/in" 

(q0 ~ SO ~") = (q~~ + i0)(EId~ ~") dE 

fo~ = (~p-IE-)S(E + i0)(E+I, +) dE 

(o (q~-IE-)SII(E)(E+It~ +) dE + 2"rri{Residue at ZR} (2.10) 
3 -  
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Here, S(E  + iO) denotes the values of the S-matrix on the upper rim of the 
cut of the Riemann surface corresponding to the square root (Bohm, 1994) 
and SH(z) represent the values of the S-matrix on the second sheet. In particular 
S~1(E) in (2.10) denotes the values of the S-matrix in the negative part of the 
real axis in the second sheet. 

Now, let us make the important assumption that we have a pole of Nth 
order at ZR and another one at z,~. Then, the residue at zR can be obtained as 
follows: The function F(z)  = (q~-lz-)(z*§ § is analytic on the lower half- 
plane and, hence, on a neighborhood Of ZR, in which SH(Z) admits the following 
Laurent series: 

al  a2 aN 
Sn(z)  - - -  + + "'" + - -  + G(z)  (2.11) 

z - z R  ( z - z R )  2 ( z - z R )  N 

where G(z)  is analytic. The series expansion of F(z)  in this neighborhood is 
given by 

F(z)  = F(ZR) + F'(ZR)(Z -- ZR) + 
F"(zR) 

(z - ZR) 2 + "" (2.12) 
2 

If we multiply (2.11) by (2.12), we obtain 

F(z)SII(z) 

= {R(z) + G ( z ) } ( F ( Z R )  + . . .  + F(u-~(ZR) ) 
( N  - 1)! (z - ZR) N-I . ~ _  . . .  

= F(ZR)R(z) + F'(ZR)(Z -- zR)R(z) + "'" 

F(U-I(ZR) 
"q- (Z - -  z R ) N - I R ( z )  -t- " "  -k- H(Z) (2.13) 

( N -  1)! 

where H(z)  is analytic on the considered neighborhood of ZR and 

a i a2 aN 
- - -  + - -  + . . ,  + ( 2 . 1 4 )  R(z) z - z R  ( z - z R )  2 ( z - z R )  N 

From (2.13) and (2.14), we can obtain the residue of SII(z)F(z) at ZR, which 
is given by 

F(zR)al + F'(ZR)a2 + F"(ZR) a3 - -  + . . .  + F(N-I(ZR) - -  
2 

aN 

( N -  1)! 
(2.15) 

Now, let us introduce the following notation: 

q0#(z) = (q~-Iz-); ~(z) = (z*§ F(z)  = q~#(z)t~(z) (2.16) 
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Using this notation, let us obtain the value of the kth derivative of  F(z) at 
the point zR: 

d k 
F~k(zR) = - ~  { ~(Z)~(Z) }~=zR 

r 

= /=0 ~ \ I ]L  -~-'~lq~#(zR) -~I~I(ZR) (2.17) 

Since ~(E) and q~#(E) = [q~(E)]* belong to ~z_ fq S, their derivatives also 
belong to ~2_ N S. For these derivatives, one obtains a formula analogous 
to the Cauchy formulas (Antoniou et al., n.d.-): If  Im z < 0, ~ e ~2_ N S, 
then 

t~(k(z) = 2~i  ( ~  Z-~ l  (2.18) 

An analogous formula is valid for tp(n(z) E ~2+ n S. 
At this point, we need to define a new class of functionals which 

generalize (2.8) and (2.9). However, in our next definition, we shall restrict 
ourselves to a kind of physically relevant functional in correspondence with 
the poles zR and z~ and the order of  these poles. These functionals are the 
Gamow vectors for a resonant pole of order N. Thus, for any k = 0, 1, 2, 
. . . .  N - 1, and arbitrary ~* ~ ~§  and q~- ~ ~ - ,  we set 

-- Z=ZR 
(2.19) 

Note that for k = 0 and z = z~, we recover (2.8) from the first mapping in 
(2.19). Analogously, we recover (2.9) from the second mapping in (2.19) 
with k = 0 and z = zR. To show that Ifk) E x ~ -  and Ilk) ~ x~+, one uses 
the fact that the kth derivative of a function in 7fz-a-_ N S is also in ~ n S 
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(Antoniou et al., n.d.-a). Also, using (2.18), it is shown immediately that 

~#(z = ~(z 
Z=ZR 

~#(z = tp(z ,; 
Z=~R Z=ZR 

k = 0,1,2 . . . . .  N - 1 (2.20) 

so that, if we use the Dirac notation 

(.?~l~ ~-) := (q,+lA)*; 

we have 

( fk l~- )  :=  (tp- [f~)* (2.21) 

t~(z) = (f~ ~ ); q~(z) = (fflq~-), 
.7.= Z* R z.=z R 

k = 0, 1, 2 . . . . .  N - 1 (2.22) 

Using (2.19) and (2.22) in (2.17), we conclude that 

Now, let us come  back to (2.10). Since S = ( l ~ - ) t l ~  § we have 

(~oo,, sqj~,) = (~- ,  ~,+) (2.24) 

The vector ~§ is the decaying G a m o w  vector (Bohm, 1994). It represents 
the vector state resulting f rom the process in which a quasistationary state 
or resonance is formed up to t ime t = 0 and then starts to decay. If  we carry 
(2.23) into (2.15), then (2.15) into (2.10), and then use (2.24), omitting the 
arbitrary vector qo-, we get 

~J+ = IE-)SII(E)(E+IqJ +) dE + ~ Cklfk) (2.25) 
/=0 

where ck are complex  numbers  depending on ~+. As we see, in the case of  
the presence of  a pair of  resonant poles of  order N, the decaying state is the 
sum of  the background,  which is identical for any order of  the poles, plus a 
linear combination of  the vectors If0), I f  t) . . . . .  IfN-i), which are the decaying 
G a m o w  vectors for this situation. We are interested in some of  the properties 
of  these vectors and, in particular, the action of  the Hamil tonian on them 
and their time evolution. 
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In order to obtain the action of H on the Ifk> we use the definition (1.2) 
for the extension of H to •  (Bohm and Gadella, 1989). Let us consider 
the following bracket: 

(Hq~Ifk> = --2~r---~l I~= Dk{E(tp-IE->}-E--- ZR dE; O h - dE k dk (2.26) 

The identity in (2.26) is granted by the Tichmarsh theorem (Bohm and 
Gadella, 1989). Now, we perform the derivative under the integral sign 

Dk{E<~-IE>} = EDk{E<~-IE-)} + kDk-t{E(tp-lE->) (2.27) 

Thus, (2.26) and (2.27) give 

<H~-IA> = 

I f ~  EIY'{E(q~-IE->} 
2"rri -E ~ Z--n 

k f= Dk-t{E(q~-lE->} 

2"rri -o~ E - ZR 

= z,,(~-IA> + ~<~-IA-i> (2.28) 

Then, the definition (2.21) implies that 

HIA> = zRIA> + klA-L> (2.29) 

This formula is true for k = 1, 2 . . . . .  N - 1. It is also correct for k = 0, 
although [j~_t} does not exist in this case. Thus, in the subspace of  x ~ -  
spanned by the vectors If0>, Ift>, �89 If2> . . . . .  [I/(N - l)]lfu-i>, the extended 
Hamiltonian has the following form: 

H = 

Zn 1 0 . . . . . .  0 
0 zR 1 . . . . . .  0 

0 0 zR . . . . . .  0 

. . . . . . . . .  0 zn 1 
0 0 0 ".. 0 zR 

(2.30) 

which exhibits the Jordan block form. Analogously, we obtain 

Hlfk) = z*lj~k) + kirk-t> (2.31) 
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Thus, in the subspace of • spanned by the vectors If'o), I~), I -  -fA) . . . . .  

[1/(N - 1)]lfN-1), the extended Hamiltonian has the following form: 

H = 

\ 
z~ 1 0 . . . . . .  0 

0 z~ I . . . . . .  0 

0 0 z$ . . . . . .  0 

. . . . . . . . .  0 z~ 1 

0 0 0 "" 0 z~ 

(2.32) 

In order to obtain the time evolution of these Gamow vectors, we have 
to take into account that the adjoint of e -zm given by e ztH fulfills the properties 
to be extended to the duals for some values of the time t only. In particular, 
e itH reduces ~+, i.e., e itH ~+ C ~+ and is continuous on ~+ for t < 0 only. 
These properties are fulfilled as well on ~ -  for t > 0 only (Bohm and 
Gadella, 1989). In this latter case, for an arbitrary q~- ~ ~ - ,  we have 

1 f ~  D~{e-Zm(tp-lE-)} dE (2.33) 
(eitHtp-I fk)  -- 27ri E-- ZR 

for t > 0, due to the Tichmarsh theorem (Bohm and Gadella, 1989). Since 

Dk{e-i'e{~p-JE-)l = ~. (-it)k-~e-Z'eDt(~-IE-) (2.34) 
l = O  

Equations (2.33) and (2.34) finally give 

e - i t H I f k ) = ~ ( k l )  (t > O) (2.35) 

Equation (2.35) can be written in matrix form. In this case, we can 
readily see that the matrix corresponding to the restriction of e -ztH to the 
subspace spanned by the vectors I~), Ifl), -~lf2) . . . . .  [I/(N - 1)]lfu-t) is 

1 - i t  

0 1 

. ,  . . . .  

0 0 

just the exponentiation of (2.30) given by 

( - i t )  z 
2 

e - i t H  ~ e - i t z R  - i t  

C--it) m-I 
( m -  1)! 
(--it) m-z 

( m  - 2 ) !  
, . .  

-.. 1 

, t > 0 (2.36) 
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Similarly, for t < 0, we obtain 

e-imlfi)  = X (--it)k-leitZ*lfl) 
l=0  

so that, on the subspace spanned by the vectors 
[I/(N - l)]13~N_l), the time evolution has the following matrix form: 

1 - it ( -  it)~ . . . . .  �9 ( - i t )m- t 

2 ( m -  1)! 
(--it) m-2 

0 1 - - i t  
(m - 2)! 

0 0 0 "'" 1 

e-itH ~ e-itz~ 

(t < 0) (2.37) 

lYo>, �89 . . . .  , 

, t < 0 (2.38) 

which is just the formal exponential of (2.32). 

3. G E N E R A L I Z E D  S P E C T R A L  D E C O M P O S I T I O N S  

In this section, we present generalized spectral decompositions for the 
total Hamiltonian H and for the evolution semigroups. The clue which gives 
rise to these spectral decompositions is formula (2.10). To begin with, we 
shall assume that we have a pair of simple resonance poles on the second 
sheet. The generalization to a finite number of such poles is straightforward. 
If the number of poles is infinite, the nonintegral term in (2.10) becomes a 
series. There are some situations for which this series can be shown to 
converge (Gadella, 1997). For these cases, the generalization of the forthcom- 
ing formalism is pretty obvious. If we combine (2.20) with (2.24), we get 

= I ~ +) dE + +) (3.1)  q,+) 
J -  o 0  

where ~+ ~ q~* and q~- ~ O - .  The integral term in (3.1) and all formulas 
derived from it will be henceforth denoted b a c k g r o u n d  in tegra l s .  The origin 
of this name is that the decaying vector #§ is the sum of the contribution of 
the Gamow vector plus an extra term called the background that prevents ~+ 
from decaying exponentially. 

Now, if we omit the vectors q~- and #§ in (3.1), absorb the irrelevant 
constant a in the definition of the Gamow vectors, and define LE) := 
SIx/-~--~I(~tE-) and I/~) = .,/-~n(E)IE+), we obtain 

I = (o Ie)(E'i d E  + Ifo){fot (3.2) 
J - -  '70 
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where the identity map I in (3.2) can be understood as the canonical embedding 
of ~ *  into x ( ~ - ) .  It is written as a sum of two continuous linear transforma- 
tions from ~+ into x ( ~ - ) ,  as is not difficult to show. In this sense, it belongs 
to the space ~(r § x ( ~ - )  of continuous linear mappings from ~ +  into x ~ -  
(Schaeffer, 1970). 

We recall now that H has the following important property: H~-* C 
�9 -+ (Bohm and Gadella, 1989) (we say that H reduces the spaces ~•  As 
a consequence, Ht~ + e ~+, for any ~+ E ~§ and we can replace t~ + by Ht~ + 
in (3.1) so as to obtain the following spectral decomposition for H: 

H -- I~ EIE>(Ef dE + ZRIA><fol (3.3) 

For the same reason (Bohm and Gadella, 1989), if t > 0, we obtain the 
following decomposition for the evolution semigroup in the future: 

Ut = e -#H = f~  e-ietlE)(EI dE + e-iZRq fo)<fOI, t > 0 (3.4) 

In order to construct a spectral decomposition for the evolution semi- 
group for the past, we need to consider the complex conjugate of (1.4). 
This gives 

t = f~o. ~><EJ dE + ~Y0><f0J 

n = I~. El~><EI dE + z?~U?0>(f01 

(3.5) 

(3,6) 

For t < 0, the following expression is valid: 

O " * - 

Wt = e -i'te = e-iE'IE)(EI dE + e-'tzRI fo)(foI 
o o  

(3.7) 

The operators in (3.5)-(3.7) are written in terms of sums of two operators 
in ~ ( ~ - ,  x(~+)). 

Observe that, although (3.5)-(3.7) are the respective f o rmal  adjoints of 
(3.2)-(3.4), this f o r m a l  adjointness does not mean that one operator is the 
adjoint of the other. In the case of I and H, they represent two different 
extensions of the same self-adjoint operator into two spaces that are, in some 
sense, complex conjugations of each other. 

For the case of multiple-pole resonances, we obtain the following spectral 
decompositions for t > 0: 
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O N - I  N - 2  

oz k=0  s=0  

' 

U t  : =  e - i t n  = e - i E q E ) < E I  dE + e -izR' Ifk)@kl 
o~ Lk=0  

- itlfo)<y l + (-it2)2 If0@ 
2 

( -it)N-I {fN_2)(~N_II ] + "" + ~-_-- ~-! (3.9) 

For t < 0, we obtain similar formulas. 
So far, we have decomposed the Hamiltonian and the evolution semi- 

groups in terms of operators of the form IE) (/~1, If~) (f~l, etc. They belong 
to the space ~ ( ~ - ,  x(~+)). Now we propose the possibility of introducing 
brackets among them. In the sequel we shall denote by (~_+)x the spaces of 
continuous linear functionals on ~•  

The derivation of these brackets is based on the following idea: The 
action of I/~) on (@+1 is a well-defined complex number we call (++1/~). Since 
Id~ +) e ~§ C x ( ~ - )  and Iq~-) ~ ~ -  C x(~+), the bracket (t~+lq~ -) is a 
bilinear form on the tensor product (~+)x | x ( ~ - )  with domain ~+ | ~ - .  
The possibility of forming the bracket (~+1/~) reveals that such a form can 
be extended. 

If we apply the identity given by (3.5) to the left to (~+1, we obtain the 
same vector, now considered as in (~ - ) x ,  and can write 

(th +1/~) = (th +111/~) = (o (O+I/~')(E'I/~)dE' + (~+lfo)(folE) (3.10) 
d -  oo 

which implies that 

(E'I~') = g(E' - E); <fol~') = 0 (3.11) 

where the delta is defined with respect the integration from minus infinity 
to zero. Analogously, we use (3.2) to write 

(r = <tp-IIIE) = (o (qo-IE')(/~'IE) dE' + (tp-l~)@olE) (3.12) 
3 -  co 

to obtain 

</~'IE) = g(E' - E); (.rolE) = 0 (3.13) 

If we now use the complex conjugates of (3.10) and (3.12), we get 

(Elf0) = 0; (Elf0) = 0 (3.14) 
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Now, let us recall that (t~*lf0) is a well-defined complex number. Using the 
same arguments as above, we have 

<,+tYo) = dE + (0+lTo>(fofJ o> (3.15) 

Since <Elf0) = 0 ,  we conclude that 

<folfo) = 1 (3.16) 

Analogously, 

<r = <q~-IE)</~Ffo) dE + <q~-rfo)(fol~) (3.17) 

implies 

<folfo> = 1 (3.18) 

From the mathematical point of view, the brackets in (3.11), (3.13), (3.14), 
(3.16), and (3.18) are well defined as kernels in the ordinary sense. 

The construction of these brackets for simple pole resonances gives us 
the method of its generalization to multiple-pole resonances. In general we 
have for arbitrary n = 0, 1, 2 . . . . .  N - 1 

@~lto) = <tolL) = (f.loS) = <oSIf.) = 0 

(f, lfm) = @mlf,) = gm,, (3.19) 

Change of Limits in the Background Integral The background integral 
in the above formulas goes from - ~  to 0. This may sometimes be an 
inconvenience. Take, for instance, formula (3.3) or (3.6). If we recall the 
traditional spectral decomposition theory in Hilbert space, these formulas 
may suggest that the spectrum of the Hamiltonian includes the negative real 
semiaxis. We know that this is wrong and that the spectrum of H is the 
positive semiaxis R +. Thus, it seems reasonable to change, whenever possible, 
the background integral for an integral from 0 to oo. The properties of the 
Hardy functions with respect the Mellin transform (van Winter, 1974) give 
us the means to make this change. Let us consider the background integrM 
in (3.1) and use the variable to instead of E to avoid possible confusion. 
There exists a relation which gives the values of a Hardy function on the 
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negative real semiaxis, knowing its values on R § (Bohm and Gadella, 1989; 
van Winter, 1974). Using this relation, we have that 

~ (qD-Ito-)Sn(to)(to + NJ +} dto 

2"rr Sn(to) dto to-i~-v2 ds 

;o ~ 
• <~p-lE-><E+lt~+>E ~'-'a dE (3.20) 

Let us consider now the following integral: 

~ Sdto)to-i,-ta dto (3.2 1) 

If we perform the change of variables (z real) 

to = -e : ;  dto = -e :  dz 

to= - ~  eZ = ~ Z = ~ 

t o = 0 ~ e Z = 0 ~ z  = - o 0  

the integral in (3.21) becomes 

] Sli(-eZ)eJ2e-i~z dz (3.22) 

If we write g ( z )  = Sn(-eZ)e J~, the latter integral is the Fourier transform 
of g(z). The Fourier transform is well defined if g(z) is square integrable. Then, 

f=_lg(z)12dz=f~,sH(-eg?e:dz=f~= ,Sn(to)12 dto (3.23) 

This means that the Mellin transform (3.21) is well defined if S(to) E 
L2( - m ,  m). Moreover, 

f~  Si,(to)to-is-'/Z dto = f~=g(z)e-i*Z (3.24) 

o r  

(At&i)(s) = , / - ~ ( ~ g ) ( s )  (3.25) 

where (AtSu)(s) denotes the Mellin transform of Su(to) (van Winter, 1974) 
and (~g)(s) the Fourier transform of g(z). Also, Su(to) ~ L2( -% 0) r g(z) 
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L 2 ( - %  ~) ~ (AtSn)(s) ~ L2( -% oo). Thus, we can write the background 
integral (3.20) as 

fo ~ (aI/tSn)(s)E ;~-'/z ds <qo-IE-)<E+It~+> dE 

fo~ = <~p-IE->G(E)<E+It~+> dE (3.26) 

where 

G(E) = " ~  (J~SII)(S)E is-l/2 ds (3.27) 
o o  

is the inverse Mellin transform of (~ tSn)( -s )  and is therefore an L2(0, ~) 
function. Since <q~-IE-) and (E+lq~ +) are the values of these functions on the 
positive semiaxis, we have that for these IE -+> 

HIE*-) = EIE*-) (3.28) 

We have seen that the Mellin transform does the job of replacing the 
integration limits in the background integral. The new integration limits cause 
the integral to be extended over the positive semiaxis, which coincides with 
the spectrum of the total Harniltonian. In the new notation, the integral in 
formulas (3.3) and (3.6) is taken from 0 to ~ and the vectors IE) and IE) are 
replaced by IE> = ~ I E - >  and I/~) = ~ I E  +) with E > 0. 

4. G A M O W  STATES AND THEIR TIME EVOLUTION 

Our next goal is to define the evolution of the so-called Gamow states, 
which are the state operators corresponding to Gamow vectors. Since Gamow 
vectors are not in Hilbert space, their corresponding "densities" are not 
operators on Hilbert space. We have already mentioned that objects like 13~> 
(ffl, etc., belong to spaces of operators like ~ ( ~ + , x ~ - ) .  Here, we wish to 
understand these objects from another point of view. The point of departure 
of this understanding is the "rigging" of the Liouville space. 

The Liouville space is the space of states in statistical mechanics. For 
the case of quantum statistical mechanics, the space of states is usually chosen 
to be the tensor product ~ | ~•  where | denotes the tensor product of 
Hilbert spaces and ~ x  the dual space of the infinite-dimensional separable 
Hilbert space ~ .  Henceforth, we shall look at ~ x  as different from ~ in 
some sense. Vectors in ~ •  are somewhat complex conjugate of vectors in 
~ .  Let us explain this idea more in detail. Under the conditions given in 
Section 2, there are unitary mappings V*- = ~-+U from ~ to L2(R+). The 
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dual space of L2(R +) can be looked on as the space of all complex conjugates 
of functions in L2(R § (which is of course the same space). This follows 
from the definition of the scalar product in L2R§ 

f0 (f, g) = f* (E)g(E)  dE (4.1) 

We see here that the role of a function depends on the fact that it belongs 
to the Hilbert space or to its dual. This idea is immediately translated to ~ 
via the unitary operators V ~. This trivial consideration is however, useful, 
in order to choose the space of test vectors for the extended or "rigged" 
Liouville space. In fact, the space of complex conjugate vectors of @= is, 
according to the above remarks, @z. Therefore, we can propose the following 
spaces of test vectors @-* | @~- in order to construct the following triplets: 

~-+ := @--- | �9 .̀7. C 9~ | 9~ x C (@__.)x | x(@~) =: (~=)x (4.2) 

where (@*)x are the spaces of continuous linear functionals on @• 
respectively. 

Remark Concerning Notation We denote the action of IF -z-) (G7"I ~ (~=)x 
into 1~-+)(~-7-1 e~ ~ -  as 

(IF+-)(G7-1, Iq0-*)(~l) = (F-*lfl0~)(r =) (4.3) 

Density Operators for  the Gamow States The second goal of the present 
section consists in defining density operators for the Gamow states in a 
similar way in which we construct density operators for pure states in Hilbert 
space. To begin with, we first consider simple pole resonances. The density 
operators for multiple-pole resonances will be constructed later in this section. 
First, we note that since Gamow vectors do not belong to Hilbert space, their 
corresponding densities cannot be traciable operators. However, they can be 
defined as objects in the dual spaces (~_+)x, exactly as Gamow vectors have 
been defined in certain dual spaces. It is also reasonable that the Gamow 
densities have the same exponential behavior with respect to time as their 
corresponding Gamow vectors. Let us choose 

p = If0)(f01 ~ (~+)• for the decaying Gamow state 

= If0)(f01 ~ (,~-)x for the Growing Gamow state (4.4) 

Now, we need to find a reasonable time evolution for the densities p and ~. 
By analogy with the Gamow vectors and the usual Liouville space, one may 
think that the time evolution of these states should be provided by certain 
extensions of the exponential of the Liouville operator e -ilL = Ut | UtI = 
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e -ira | e ira. However, this operator cannot be extended by continuity either 
to (,.Y+)• nor to (,.~-)x, since it does not reduce any of the spaces ,.Y-'-. 
Therefore, it is nonsense to apply it to p or to ~ for any t ~ 0. For instance, 
in the decay process, in order to define p(t) for t > 0, one may try 
[p(O) = ifo>~oI] 

(p(t), I~+)<~-I) = (e-#Lp(O), l~§ 

= ( p ( 0 ) ,  ei'LNJ§ 

= ( p ( 0 ) ,  u~)++><~-Iu,) 

- =  (foiUttiO+>(tp-iU, i fo> (4.5) 

If U, = e -itH, the bracket <f01U~l~*) is not well defined because U~ = e -itH 
does not map ~* into itself. However, if we choose another conjugation for 
Ut different from the standard adjointness operation, it would be possible to 
give a meaning to (f01U,tl++). This can be done with the aid of the spectral 
decompositions given in Section 3. With these ideas in mind, take the formal 
conjugate in (3.4) as follows: 

= I ~ eieqE)(EIdE + ei-'Rqfo)<fol (t > U* O) (4.6) 
J -  , m  

Indeed, (4.4) is a generalized sum of operators in ..~(~§ •  giving another 
operator in this space. If we perform complex conjugation on the coefficients 
of this sum, we obtain (4.6). Now, after (4.6), we get 

(folU*l* +) = (o em'(j~olE)(s dE + eiz~'(folfo)(fol*+ ) = e':~'(fol* +) 
J -  o o  

(4.7) 

On the other hand, for t > 0, (s Ifo) = (s is well defined and 
is equal to e-itz'~4,foltp+). Now, we replace (folU~lqP) by (folU*l+ +) to obtain 

(p(t), It~§163 = e-tr<j~ol+ +> <+-Ifo> = e-'r(p(0), I~+)<s t > 0  
(4.8) 

Since It~+)<q~-I is arbitrary, 

p(t) = e-trp(0); t > 0 (4.9) 

This trick may have, however, a major inconvenience: it is not difficult 
to see that U* as in (4.6) is not an extension of U, t and therefore we are 
using an extended dynamics which is not a natural extension of the usual 
dynamics in Hilbert space. Our approach is mainly justified by the fact that 
it gives the correct exponential decay for the decaying Gamow state (as it 
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gives the correct exponential growth for the growing Gamow state). This 
inconvenience shows that something deep is really behind the extension of 
the Gamow vector formalism to the rigged Liouville space, which will be 
investigated in elsewhere (Antoniou et al., n.d.-b). 

For t < 0 and ~(0) := p as in (4.5), we have an analogous situation. 
The equivalent of (4.6) is now 

= ( f o t w * , l , c - ) ( , + t w ,  l?o) (4.10) 

where Wt = e -itH. For t < 0, the identity (t~+lWtlJ~o) = e-i-'~t(t~+if0 ) does not 
represent a mathematical problem, but, again, (folWttlq~ -) is not defined. To 
avoid this inconvenience, we proceed in analogy to what we have done for 
the decay process by introducing the conjugate W* of W, in (3.7) as 

W* = IS= e"eqE)(EIdE + eitznlf~176 (4. l l) 

and then replacing (folW,~lq0 -) by (f01W*lq~-). Thus, we have 

(f01Wt*lq0-) = eitZR(folq~-) (4.12) 

so that for t < 0 

(~(t), Iq~-)(tld+l) =ert(O(O), [~o-)(t~+l) (4.13) 

which can be written as 

~(t) = er'~(0), t < 0  (4.14) 

After all of the above, we realize that we can no longer write p(t) = 
e-itLp(0), t > 0, and 15(0 = e-itL0(0), t < 0, and keeping at the same time 
the usual meaning of the exponential e -itL. From now on, we shall write p(t) 
= ~tp(0), t > 0, and 0(t) = ~14/'t~(0), t < 0. We want to show that there 
exists a relation between the semigroups ~t t and ~/'t- In order to do it, let us 
define the notion of formal adjoint of U, U*, Wt, and Wt*. For U,, its formal 
adjoint U~ is given by 

( , - i v : , + )  * = (4.15) 

so that (4.15) along with (3.4) gives 

, * ~ ( 0  

U*t = e'tZRI fo)(fo I + 
L o o  

eiEq#~)(EldE (t > O) (4.16) 
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Similarly, one has 

U*t = e-iZdi f~176 + f ~  e-iEqfiT)(EIdE (t > 0) (4.17) 

Wit = eizRt@o)(fo[ + f~ eiEtlE)(EldE (t > 0) (4.18) 

W*t = e-iz*R'lfo)(fol + f]~ e-iEqE)(EldE (t > 0) (4.19) 

Note that U *t = Ut t* and W** = W**. Then, for t > 0, 

i q , + ) ( , - i )  = (%0,  I0+)( o -I)  = @ u * l o + ) ( , p - t u ,  Ifo) 

= (u**rfo)(fOu ,, **+)(,p-t) (4.20) 

~tft = ~ t  (4.25) 

The operators Ut, U*, Wt, W* as well as their adjoints are well defined 
for all values of t. However, in principle, they cannot be extended by continuity 
to the duals x ~ -  and x~+. Therefore, ~ t  and ~/'t are not continuous operators 
on ( ~ - ) x  | • and (q~+)x | xq~-, respectively. Continuity is not essential 
here, since these operators have a domain which is bigger than ~ | ~ x  and 
includes the Gamow states. In a subsequent paper, we shall introduce a 
mathematical apparatus to make them continuous operators on a space of 
states that includes Gamow states (Antoniou et aL, n.d.-b). 

so that 

Thus, 

~ ,p  = U*tpU t, or ~ ,  = U** | U, t (4.21) 

Analogously, for t < 0, 

W, O = W*tOW~ or W, = W** | W[ (4.22) 

If we compare (3.4) with (4.20) and (4.6) with (4.21), we obtain 

W, t = U-t; W *t = U*, (4.23) 

Now, let us define the formal adjoint ~ t_ t as 

~ t  := (U.tt | Ut_t), = U*t | U-t = W** | W~ (4.24) 
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Important Remark The fact that 0"~ t and ~ t are defined for all values 
of time, so that they act on the Gamow states for all times as 

~flfo)Oeo i = e-rqfo)(fo I (t a R) 

%t/'tlf0)@0 I= erqfo)(fo I (t a R) (4.26) 

has important consequences. The traditional formalism of Gamow vectors 
says that tfo) is created at t = 0 and evolves for positive times and If0) 
disappears at t = 0 and its evolution has taken place for negative values of 
time. This implies a choice of the origin of time and consequently a violation 
of temporal inhomogeneity. This violation does not take place with the present 
point of view, because no matter at which time we start our measurements 
on a radiative sample, we always observe exponential decay. We acknowledge 
I. Antoniou for this remark. 

5. T I M E  EVOLUTION FOR M U L T I P L E - P O L E  RESONANCES 

In this section we generalize the previous study to multiple-pole reso- 
nances. We start with the discussion on the simplest situation of having 
double-pole resonances; the extension to the higher order case is straightfor- 
ward. Here, decaying Gamow states are linear combinations of dyads of the 
form If/)(fkl (i, j : 0, 1), whose coefficients have some properties to be 
specified later. Analogously, growing Gamow states are linear combination 
of 13~)(fjl. Let us study the decaying process first. The evolution semigroup 
e -ira for t > 0 has, after (2.36), the following expression: 

Ut=e-itn ( e-~t~R --ite-it:R~ I~ = e -itzR /I + ~ e-ie'lE)(EIdE (5.1) 

In analogy with what we have done before, we define the conjugate U* of 
Ut as 

= (eitz*R 0.)+ f~ eieqE)(~,d E (5.2) U~ \iteitz* x ei,z R 

For our purposes, only the matrix part in (5.1) and (5.2) is relevant. Therefore, 
a convenient matrix notation will be useful here and will simplify our calcula- 
tions. Thus, we shall use 

(5.3) 
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After this identification, the matrix parts for U, and U* can be written, 
respectively, as 

e-"=Rlfo)(fol - ite-i'zRIfo)(f,I + e-i'zRIf,)(f,1 (5.4) 

eitz~lfo)(fo[ + itei'z~lA)(fo I + eitz~[A)@]l (5.5) 

As we have mentioned, decaying Gamow states should be linear combi-  
nations of  dyads of  Gamow vectors: 

I 

p = ~] pulf)(f: l  (5.6) 
i,j=o 

where Pi/, i, j = 0, 1, are complex numbers. We study the time evolution of  
p as we have done for the case of  a simple pole resonance. For any dyad 
[~+)(~p-I, we write 

(p(t), It~+)(tp-l) = (~,p, i0+5( -i) = (p, 

I 

= ~ pJ~saUWlO~>%-IUtlA> (5.7) 
ij=o 

To obtain the sum in (5.7), one should replace Ut and U* by (5.4) and 
(5.5), respectively. For practical purposes, it is easier to evaluate directly 
U, If~)@lUt* using the matrix notation suggested above. We only write here 
the final result, in which t > O, as 

U, lf])(fmlUr* = e-r'lfE)f~l (5.8) 

U, Ifo)(f~lUt* = e-rt{Ifo)(f~l + itlfO(ft[} (5.9) 

U, If~)(folUt* = e-r'{Ifl)(fol - itlf~)(f]l} (5.10) 

Utlfo)~z'olU * = e-r'{Ij~)(prol - itl3~)(fjl + i / l~ ) (~ l  - tz lA)(f t l}  (5.11) 

Formulas (5.8)-(5.11) show that (5.7) can be written as 

1 

(p(/), Ith+)(q)-l)= ~] pu(O(f, lth+)(~-If) (5.12) 
ij=O 

where 

P0o(t) = e-r 'p~,  

pl0(t) = e-rt(p]0 + itpoo), 

p0m(t) = e-rt(poz - itp~) (5.13) 

pll(t) = e-rt(pll - itplo + itpo] + t2ptl) 
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Note that P0 = pij(0). For t < 0, one finds analogously, 

1 
~(t) = ~ , ~ ( 0 ) =  ~ ~,j(t)Lf~)(~L (5.14) 

i,j=O 

where ~0(t) have the same explicit form as Pij, only replacing e - r '  with t > 
0 by e vt with t < 0. 

For an Nth-pole resonance the generalization of the above formalism is 
straightforward. The results that can be obtained here are an immediate 
generalization of those found for N = 2. In particular, the time evolution for 
[fi)(fkl or 13~)(f/ is not exponential except for IfN-,)(fu-ll and I fN-O( fN- l l .  
AS an example, we readily get (t > 0) 

N-I 

~t,lf0)(f01 = e -v '  ~ pktlf~)(fil (5.15) 
k,l=O 

where 

( i t )h - l (_ i t ) t - I  
Pkt = ( k -  1 ) ! ( / -  1)! (5.16) 

Again, Gamow states are suitable linear combinations of dyads of 
Gamow vectors. The coefficients of these linear combinations, which are 
matrix elements in matrix notation, are functions of t > 0 for the decaying 
process and of  t < 0 for the growing process. For the decaying process these 
functions are pkt(t) = e-CtPk§ where P~+t is a polynomial of order k + l. 
A similar result is obtained for the growing process, just replacing e - r '  by e Ft. 
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